ECS332 2015 Quiz 1

Solution

Example 3.24. Consider the two-path channels in which the receive signal is given by

$$y(t) = \beta_1 x(t - \tau_1) + \beta_2 x(t -]\tau_2).$$

Four different cases are considered.

- (a) Small $|\tau_1 \tau_2|$ and $|\beta_1| \gg |\beta_2|$
- (b) Large $|\tau_1 \tau_2|$ and $|\beta_1| \gg |\beta_2|$
- (c) Small $|\tau_1 \tau_2|$ and $|\beta_1| \approx |\beta_2|$
- (d) Large $|\tau_1 \tau_2|$ and $|\beta_1| \approx |\beta_2|$

"Faster" oscillation in the frequency domain

"Slower" oscillation in the frequency domain

Figure 11: Frequency selectivity in the receive spectra (blue line) for two-path channels.

Figure 11 shows four plots of normalized¹⁴ |X(f)| (dotted black line¹⁵) and normalized |Y(f)| (solid blue line) in [dB]. Match the four graphs (i-iv) to the four cases (a-d).

¹⁴The function is normalized so that the maximum point is 0 dB.

¹⁵For those who are curious, x(t) is a raised cosine pulse with roll-off factor $\alpha = 0.2$ and symbol duration T = 0.5.