ECS332 2015 Quiz 1 Solution

Example 3.24. Consider the two-path channels in which the receive signal is given by

$$
\left.y(t)=\beta_{1} x\left(t-\tau_{1}\right)+\beta_{2} x(t-] \tau_{2}\right) .
$$

Four different cases are considered.
(a) Small $\left|\tau_{1}-\tau_{2}\right|$ and $\left|\beta_{1}\right| \gg\left|\beta_{2}\right|$
(b) Large $\left|\tau_{1}-\tau_{2}\right|$ and $\left|\beta_{1}\right| \gg\left|\beta_{2}\right|$
(c) Small $\left|\tau_{1}-\tau_{2}\right|$ and $\left|\beta_{1}\right| \approx\left|\beta_{2}\right|$
(d) Large $\left|\tau_{1}-\tau_{2}\right|$ and $\left|\beta_{1}\right| \approx\left|\beta_{2}\right|$

Figure 11: Frequency selectivity in the receive spectra (blue line) for two-path channels.
Figure 11 shows four plots of normalized ${ }^{14}|X(f)|$ (dotted black line ${ }^{15}$) and normalized $|Y(f)|$ (solid blue line) in [dB]. Match the four graphs (i-iv) to the four cases (a-d).

[^0]
[^0]: ${ }^{14}$ The function is normalized so that the maximum point is 0 dB .
 ${ }^{15}$ For those who are curious, $x(t)$ is a raised cosine pulse with roll-off factor $\alpha=0.2$ and symbol duration $T=0.5$.

